基于记忆的协同过滤主要分为:
相似统计方法得到具有相似兴趣爱好的用户
基于模型的协同过滤主要分为:
先用历史数据得到一个模型,在用此模型进行预测。基于模型的推荐广泛应用使用的技术包括神经网络技术、潜在语义LFM分析、贝叶斯网络聚类算法模型、分类算法模型、回归算法模型、矩阵分解模型、神经网络模型图模型、隐语义模型
在推荐系统中,“关系”是用关系矩阵的形式来创建和存储下来的。以视频推荐为例,可以归纳为用户关系矩阵U-U矩阵、视频(物品)关系V-V矩阵和用户-视频(物品)关系U-V矩阵。
基于记忆的协同过滤主要是依赖于对U-U矩阵和V-V矩阵处理分析,通过相似度计算得到用户相似度和视频或物品相似度,并在此基础上形成推荐结果。
因篇幅问题不能全部显示,请点此查看更多更全内容