R.Koch,K.Koeser,B.Streckel,J.-F.Evers-SenneInstituteofComputerScienceandAppliedMathematicsChristian-Albrechts-UniversityofKiel,24098Kiel,Germany
email:rk@informatik.uni-kiel.deAbstract
Inthiscontributionwedescribeavisualmarker-lessreal-timetrackingsystemforAugmentedRealityapplications.Thesystemusesafisheyelensmountedonafirewirecam-erawith10fpsforvisualtrackingof3Dscenepointswith-outanypriorsceneknowledge.Allvisual-geometricdataisacquiredonlineduringthetrackingusingastructure-from-motionapproach.2DImagefeaturesinthehemisphericalfisheyeimagearetrackedusinga2Dfeaturepointtracker.Trackingmaybefacilitatedbyorientationcompensationwithaninertialsensor.Basedontheimagetracks,3Dcam-eraegomotionand3Dfeaturesareestimatedonlinefromtheimagesequence.Thetrackingisrobusteveninthepresenceofmovingobjectsasthelargefieldofviewofthecamerastabilizesthetracking.
trackingalgorithmsfromroboticsandcomputervision.Inrobotics,therealtimeSLAMapproach(SimultaneousLo-calizationAndMapping)hasbeenusedwithnon-visualsensorslikeodometryandultrasound/lasersensors.Theseideaswererecentlyextendedtovisualtracking[4].Incom-putervision,offlineARandvisualreconstructionhasbeeninthefocusforsomeyears.ThedominantapproachinthisfieldistermedSfM(StructurefromMotion),wheresimulta-neouscameraposeestimation,evenfromuncalibratedcam-eras,and3Dstructurereconstructionispossible[8].Bothapproacheshavemuchincommonandcanbemergedto-wardsaversatilerealtimeARsystem[6].
2ONLINEARSYSTEMDESIGN
1INTRODUCTION
AugmentedReality(AR)systemsaimatthesuperpo-sitionofadditionalscenedataintothevideostreamofarealcamera.Onecandistinguishbetweenofflineaugmen-tationforspecialeffectsinvideopostproduction[3],andonlineaugmentation,whereausertypicallycarriesaheadmounteddisplay.Additionalinformationiseithersuper-imposeddirectlyontothevideostreamusingvideosee-throughdevicesoritisprojectedopticallyintothevisualpathoftheusersgazedirection[1,2].
ThetechnicalandalgorithmicdemandsforonlineARareverychallenging.TheARequipmentmustbecarriedbytheuserpossiblyforalongtime,henceitshouldbelight-weightandergonomicandnothinderfreemovements.Atthesametime,computationofcameraposemustbeveryfastandreliable,eveninuncooperativeenvironmentswithdifficultlightingsituation.Thiswillrequirehighcomputa-tionaldemandsonthesystem.
Recently,quitesomeresearchactivitiesononlineARwereundertaken.Theworkwasinspiredbytheonline
InthefollowingwewilldescribethecomponentsofanonlineARsystemthatallowsrobust3Dcameratrackingincomplexanduncooperativesceneswherepartsofthescenemaymoveindependently.ItisbasedontheSfMapproachfromcomputervision.Therobustnessisachievedintwoways:
1.A190Degreehemisphericalfisheyelensisusedthatcapturesaverylargefieldofviewofthescene.Ifusedinindoorenvironments,thehemisphericalviewwillalwaysseelotsofstaticvisualstructures,evenifthesceneinfrontoftheusermaychangedramat-ically.Thesystemisthereforemainlydesignedfor(butnotrestrictedto)indooruse,becauseinoutdoorscenesthesunlightfallingdirectlyontotheCCDsen-sorwillcauseproblems.Theseproblemscanbefacil-itatedwhenCMOSsensorswithlogarithmicresponseandhighdynamicrangeareused.2.The3Dtrackingisbasedonrobustcameraposeesti-mationusingstructurefrommotionalgorithms[8]thatareoptimizedforrealtimeperformance.Thesealgo-rithmscanhandlemeasurementoutliersfromthe2Dtrackingusingrobuststatistics.
2.1System
ThegoaloftheARsystemisalight-weightwearableso-lutionoutobstructingthatallowstherealtimeusermotion.augmentationThecomputationalviaaHMDloadwith-ofsuchasystemforsimultaneousrealtimetrackingandaug-mentationwearablecomputers.istoohightoWebehaveperformedthereforeoncurrentlydesignedavailablethesys-temdisplaywithandalightweighttheimagewearableacquisition,unitthatfortheisconnectedhead-mountedtoaback-endPCviaawirelessLANaccess.Inthiscontribu-tionunitweandaredoonlynothandleconcernedaugmentation.
withtherecordingandtrackingThevideocamerasystemmustbeextremelysmall.Wehavecrolenschosenadaptera640x480andamicrolensfirewirefisheye.cameraThewithimage12mmqualitymi-ofthefisheyelensdegradestowardstheboundaryofthehemisphere,degreeandathereforequadraticthesubimageopeningwithangle400x400isreducedpixeltoispro-160cessed,resultinginanangularresolutionof3pixel/degree.ThethusbackendWLANarawchannel.
datasystemrateofis1.6currentlyMB/sisabletransferredtoprocessthrough10fps,theDoFIninertialaddition,sensorthecameraat100Hzrotationrate.Theismeasuredrotationdatausingisuseda3toturecompensatepositions.
fastheadrotationsandtopredictimagefea-Thebackendsystemrunstwoseparatethreads(possiblyonfroma2-processorthe3DSfMunit)posethatandseparatestructurethecomputation.2DfeaturetrackingThees-timated3Dposeishandedbacktothewearableunitandvisualaugmentationissuperimposedontotheuserview.Figure1givesanoverviewonthesystemcomponents.
2.2Robusttrackingfromfisheyeimages
The3Dtrackingsystemisdividedintotrackinginitializa-tion,Thetracking2Dfeatureisfacilitatedtrackingbyandtherobust3DoF3Dinertialposerotationestimation.sen-sor.
Initializationafirstsetimageofsalientand2Dfeaturetracking:Inaninitialstep,ofthe2Dsequence.intensitycornersThese2Darefeaturesdetectedareinthenthetrackedthroughouttheimagesequencebylocalfeaturematchinglost,newtrackswiththeareKLTconstantlyoperatorreinitialized.[9].IffeatureThenewtrackstracksarearemergedwithprevioustracksinthe3Dstagetoavoiddrift.
Aswearehandlingsphericalimagesfromthefisheyelens,caremustbetakentocompensatethesphericaldis-tortions2Dmatching,usinglocalthe3Dplanarcamerarectification.rotationvelocityTofurtherismeasured
facilitateInertialHMDSensorFisheye CameraAugmentationRotationImage Seq.(VGA)Data(IEEE1394)Rendering2D WearablePrefilteringImage PC
3D CameraPoseRotation DataWLANPrefilteredImage SequenceThread BThread APose3D 2D EstimationTrackingFeatureBackendaided byPC
3D Featuresensor dataGenerationFigure1:OverviewofARsystem.
bysatedtheininertialtheimages.rotationCurrentlysensorandwecompensatetherotationtheiscompen-rotationonly,butaparallaxcompensationbybackprojectionof3Dfeaturesisplanned.
3Dgivenfeaturetoestimate2Dfeaturetrackingthemetrictracks,andcameraaSfMposeposeapproachestimation:and3D[7]featurecanbeFrompositionsappliedthesimultaneously.sentialmatrixbetweenGivenathesetviewsofreliablecanbe2Dcomputedfeatures,andtheEs-therelativeposeofthecamerascanbeextracted.Simultane-ously,2Dcorrespondences3Dfeaturepointsandcantherelativebetriangulatedpose.Thefromcamerathegivenposeandthe3Dfeaturepositionsaredeterminedwitharotationrelativeoverallscale.toaninitialThiscamerascalemustpositionbeinsertedandupintotoantheunknownsystemfromarigidexternalscenewheredata.ThetheestimatedSfMisbased3Dfeaturesontheassumptiondonotmoveofbetweenviews.Therefore,caremustbetakentohandlemovingobjectsandmeasurementoutliersrobustly.
Robustnessoftheestimationisintroducedbyrobuststa-tisticalevaluationoffeaturematchingandEssentialma-trixThus,computationmovingobjectsusingareRANdomtreatedSAmplingasmeasurementConsensusoutliers
[7].thateyearecamerasdiscardedleadsbytotheanRANSAC.especiallyrobustThetrackingtrackingfromforfish-tworeasons:
1.Theandmovingwidefieldobjectsofviewtendcoverstobeaonlyveryinwideasmallscenepartareaofthescene.Therefore,mostofthevisiblesceneisstatic.Second,tolargeandacamerajerkyrotations.mountedonThisahumanrotationsheadareispartiallysubjectcompensatedmayrotatethebycameratherotationquicklysensor,outofbutview.stillThistheheadwillnothappeneasilywithafisheyecamerawithhemi-sphericalview.2.Itcanbeshownthatawidefieldofviewstabilizesthesmallposefieldestimationofview,the[5].motionForperspectivetowardsthecamerasopticalwithaxisisthealwaysfocusillofdefinedcontractionbecause(FOC).thecameraOnlythemovesmotiontowardsper-pendiculartotheFOCcanbeestimatedreliably.Inasphericalthatisperpendicularimage,theretowillthealwaysFOC,hencebeanimagetheestimationpositionofthecameramotionisalwaysreliable.Aresolutiondrawbackofofthetheimage,sphericalhenceimagetheestimateisthelowforangularafish-eyelenscamerawillbelessaccuratethanestimatesfromangularasidewaysresolution.
movingperspectivecamerawithhigh3EXPERIMENTS
tem.WeInhavetheperformedfollowingsectionextensiveweexperimentswillgivesomewithresultsthesys-ontimingandonvisualcameratracking.
Figure2showscameratrackingresultsofasequenceof900spaceviews.andevenTherotatedcamerauptowas180moveddegreesextensivelyawayfromthroughtheini-tialviewpose.allowedStill,thattracking3Dfeatureswaspossiblewerevisiblesincetheforwidealongfieldtime.oftrackedToevaluateona400x400thetiming,pixeleitherimage50usingor100a3.0featuresGHzP4werewithsinglebeseparatedanddoubleinto2processortasksthatPC.run2Deitherand3Dconcurrentlytrackingcanonthe1-CPUorparallelonthe2-CPUPC.Thetimingtableinconfigurationtable1showsforthethat2-Processor10fpsarePC.
indeedpossibleinthisNo.feat.
3D
2-CPU
3040
145
98Table1:Timingoftrackingperframeinms.
Figure2:Visualizationof3Dcameratracks(image1andimagecorner.
650)withtheoriginalfisheyeimageintheupperrightsectionFigureof3theshowscameraaugmentationwasmappedresults,toaplanarwhereviewtheandcentralsyn-theticobjectswereplacedontherealtable.Theobjectsremainedintheirallocatedplacewithoutmuchjitter.
4CONCLUSIONS
Thepresentedapproachshowsthatarobustmarkerless3Dtrackingfromafisheyecamerasystemispossibleinre-altime.therfine-tuningThesystemisneeded.presentedTheisin3Danprocessingearlystageisandnotfur-yetoptimizedthisstage.toCurrently,speedandthereweisforeseenofeedbackstillsomefrompotentialthe3Dfea-inturesintothe2Dstage.Aproperpredictionfromthefull6prediction.DoFstateTheofthecovariancessystemwilloftheenhance3Dfeaturesthecurrentarecurrently3DoFevaluatednumericallywhichisacostlyoperation.Anan-alyticalthereiscurrentlysolutionwillnosolutionfurtherenhanceonthecomputationspeed.Furthermore,oftheab-
Figure3:Visualaugmentationofvirtualobjectsinarealscenesuperimposedoncentralpartofimages200and500.
solutescaleofthereconstruction.AugmentationwillneedthetransformationintotheEuclideanworld.Finally,weneedrecognizingbetterreinitializationobjectsandsalientstrategiesfeaturesforfromthe2Dimagetracksdatabytominimizedrift.
Acknowledgments
istryThisofworkSciencewasprojectfundedBMBF-ARTESASpartiallybytheGermanandtheEuro-Min-peanCommissionprojectIST-2003-2013MATRIS.
References
[1]R.Azuma.Asurveyofaugmentedreality.InPresence:
TeleoperatorsandVirtualEnvironments6,pages355–385,Aug.1997.[2]R.Intyre.Azuma,RecentBaillot,advancesBehringer,inaugmentedFeiner,Julier,reality.andInMac-IEEE
ComputerGraphicsandApplications,Vol.21,No.6,pages34–47,Nov.2001.
[3]G.Bazzoni,E.Bianchi,O.Grau,A.Knox,R.Koch,
F.Lavagetto,A.Parkinson,F.Pedersini,A.Sarti,G.–advancedThomas,toolsandS.andTubaro.techniquesTheforORIGAMIhigh-endProjectmixingandIEEEinteractionProceedingsbetweenof1strealInternationalandvirtualSymposiumconten.onIn3DDataProcessingVisualizationandTransmission(3DPVT’02),2002.[4]A.mappingJ.Davison.withaReal-timesinglecamera.simultaneousInProceedingslocalisationInterna-and
tionalConferenceComputerVision,Nice,2003.[5]A.J.Davison,Y.G.Cid,andN.Kita.Real-time3D
SLAMsiumonwithIntelligentwide-angleAutonomousvision.InVehicles,Proc.IFLisbonACSympo-,July2004.[6]A.J.Davison,W.W.Mayol,andD.W.Murray.Real-timesion.localisationInProceedingsandmappingoftheIEEEwithInternationalwearableactiveSympo-vi-siumonMixedandAugmentedReality,Tokyo,2003.[7]R.HartleyandA.Zisserman.MultipleViewGeometry
inComputerVision.Cambridgeuniversitypress,2000.
[8]M.calibrationPollefeys,andmetricR.Koch,reconstructionandL.J.inV.spiteGool.ofvaryingSelf-andJournalunknownofComputerinternalVisioncamera,32(1):7–25,parameters.1999.International[9]J.ShiandC.Tomasi.Goodfeaturestotrack.InCon-ferenceonComputerVisionandPatternRecognition,pages593–600,Seattle,June1994.IEEE.
因篇幅问题不能全部显示,请点此查看更多更全内容