您好,欢迎来到世旅网。
搜索
您的当前位置:首页Different thermodynamic pathways to the solvation free energy of a spherical cavity in a ha

Different thermodynamic pathways to the solvation free energy of a spherical cavity in a ha

来源:世旅网
Differentthermodynamicpathwaystothesolvationfreeenergyofasphericalcavityin

ahardspherefluid

1

arXiv:cond-mat/0301337v1 [cond-mat.stat-mech] 19 Jan 2003DepartmentofPhysics,2DepartmentofChemistryandBiochemistry,

and3InstituteforPhysicalScienceandTechnology,UniversityofMaryland,CollegePark,Maryland20742

(Dated:February2,2008)

Yng-gweiChen1,3andJohnD.Weeks2,3

Thispaperdeterminestheexcessfreeenergyassociatedwiththeformationofasphericalcavityinahardspherefluid.Thesolvationfreeenergycanbecalculatedbyintegrationofthestructuralchangesinducedbyinsertingthecavityusinganumberofdifferentexactthermodynamicpathways.Weconsiderthreesuchpathways,includinganewdensityroutederivedhere.Structuralinformationaboutthenonuniformhardspherefluidinthepresenceofageneralexternalfieldisgivenbytherecentlydevelopedhydrostaticlinearresponse(HLR)integralequation.UseoftheHLRresultsinthedifferentpathwaysgivesagenerallyaccuratedeterminationofthesolvationfreeenergyforcavitiesoverawiderangeofsizes,fromzerotoinfinity.Resultsforarelatedmethod,theGaussianFieldModel,arealsodiscussed.

I.

INTRODUCTION

Thesolvationfreeenergydetermineshowreadilyaso-lutecanbedissolvedinagivensolventfluid.Thisplaysanimportantroleinmanychemicallyandbiologicallyim-portantprocesses,perhapsmostnotablyinhydrophobicinteractionsinwater.Asignificantpartofthesolvationfreeenergyarisesfromtherequiredexpulsionofsolventmoleculesfromtheregionoccupiedbytheharshlyre-pulsivemolecularcoreofthesolute.Theseverystrong“excludedvolume”interactionscansignificantlyperturbthelocaldensityaroundthesoluteandcausesimpleap-proachesbasedongradientexpansionstofail.

Theseeffectscanbeseenmostclearlyinthesimplemodelsystemtreatedinthispaper.WewillcalculatetheexcessorsolvationfreeenergyassociatedwiththeinsertionofasphericalcavitywithradiusRvintoahardspherefluid,whosemoleculeshavediameterσ.Bydefini-tion,thecentersofthesolventmoleculesarecompletelyexcludedfromtheregionofthecavity,whichthusactslikeahardcoreexternalfield.

Thissystemhasmanyinterestinglimits.Whentheex-clusionfieldorcavityradiusRvequalsσ,thenthecavityactslikeanothersolventparticleandthesolvationfreeenergyisdirectlyrelatedtothechemicalpotentialofthesolvent.Asthecavityradiustendstoinfinityiteffec-tivelyturnsintoahardwallandtherelevantthermody-namicquantityisthesurfacefreeenergyorsurfaceten-sionassociatedwithahardwallinahardspherefluid.AcavitywithradiusRv=σ/2actslikeahardcore“pointsolute”ofzerodiameter.Evenshorter-rangedhardcorefieldsor“tinycavities”withRv≤σ/2arealsoofinter-est,sincetheinducedstructureandsolvationfreeenergyofatinycavitycanbecalculatedexactly.Thislimitcanthusserveasanontrivialcheckonapproximatemethods.Themostcommonlyusedmethodtodayforsuchprob-lemsisweighteddensityfunctionaltheory(DFT)[1].Hereoneattemptstodescribethefreeenergydirectlyasafunctionalofsomekindofsmoothedorweightedaverageofthenonuniformandoftenrapidlyvaryingsin-

gletdensity.Thishastheadvantagethatthefreeen-ergyisobtaineddirectlyandbyconstructiontheassoci-atedfluidstructure(obtainedbyfunctionallydifferenti-atingthefreeenergy)isconsistentwiththeapproximatefreeenergy.Howeverthechoiceofappropriateweightingfunctionsisbynomeansobviousandanumberofdiffer-entandoftenhighlyformalschemeshavebeenproposed.Wefocusinsteadinthispaperonmakingdirectuseofstructuralinformationaboutthenonuniformsolventfluidtoobtainthesolvationfreeenergy.Webelievethisallowsphysicalintuitiontoplayamorecentralroleandwecantakeadvantageoftherecentdevelopmentofagenerallyveryaccuratetheoryrelatingthestructureofanonuniformhardspherefluidtotheassociatedexternalfield[2].

Aswewillseebelow,thefreeenergycanthenbecal-culatedbyintegration,startingfromaninitiallyknownstate(e.g.,theuniformfluid)anddeterminingthefreeen-ergychangesasthesolute-solventinteraction(thehardcoreexternalfield)is“turnedon”,oralternatively,asthedensityischangedfromtheinitialtothefinalstate.Thereexistmanypossibleroutesfromtheinitialtothefinalstate,andwewillgenerallyrefertothemasther-modynamicpathways.Ifexactresultsareusedfortheintermediatevaluesofthestructureandassociatedfields,thenallthesedifferentpathwayswillgivethesame(ex-act)resultforthefreeenergy.

Inpractice,ofcourse,approximationswillhavetobemadeandthedifferentpathwayswillgenerallyyielddif-ferentresults.Thisissometimesreferredtoasthe“ther-modynamicinconsistency”ofstructurallybasedmethods[1].Butthiscanbeviewedmorepositivelyasgivingonethefreedomtochooseparticularpathwaysthatcouldberelativelyinsensitivetotheerrorsthatexistinthestruc-turaltheory,andwewilltrytousethisflexibilitytoobtainthemostaccurateresults.Moreover,thereisaninherentsmoothingofthestructuralinformationintheintegrationusedtoobtainthefreeenergy.Thediffer-encesinfreeenergypredictedbydifferentpathwayswillalsogiveussomeindicationabouttheoverallqualityof

thetheory.

Thisapproachgenerallyrequiresthedensityprofilesandassociatedfieldsofalltheintermediatestatesalongthevariouspathways,andthusafastandaccuratemethodfordeterminingthesequantitiesiscrucialforcomputationefficiency.Wewilluseherethegenerallyaccuratehydrostaticlinearresponse(HLR)equation[2]proposedbyKatsovandWeeks.AdifferentphysicallymotivatedderivationoftheHLRequationisgivenbe-low.

Wewillalsoexaminethealternativefreeenergypre-dictionsthatarisefromatheorycloselyrelatedtotheHLRequation,theGaussianfieldmodel(GFM)devel-opedbyChandler[3].ForasolutewithahardcoretheGFMproposesanapproximatepartitionfunctionfromwhichtheassociateddensityresponsecanbederived.Intheparticularcasewherearigidcavityisinsertedintoahardspherefluid,theHLRandtheGFMapproachesturnouttomakeidenticalpredictionsfortheinducedstruc-ture.Thusstructurallybasedroutestothefreeenergyinvolvingonlyhardcorefieldswillgivethesameresults.Inaddition,onecanusetheapproximateGFMpartitionfunctiontoevaluatethesolvationfreeenergydirectly.However,aswewillshowlater,thelatterapproachtendstoproducelessaccurateresults.ThisdeficiencyshowsupevenmorestronglyinthetinycavitylimitwherethestructuralpredictionsoftheHLRandtheGFMareex-act,andseveralpathwaysgivingtheexactfreeenergycanbefound.Thisillustratestheadvantageofconsider-ingavarietyofthermodynamicpathwaysthatcanmakebestuseoftheavailablestructuralinformation.

II.

DENSITYRESPONSETOANEXTERNAL

FIELD

A.

TheHLRequation

Wedescribethesystemusingagrandcanonicalen-semble,andthuswanttodeterminetheexcessgrandfreeenergyarisingfrominsertionofasphericalcavityorhardcoreexternalfieldofradiusRv.ToderivetheHLRequation[2]westartwiththebasiclinearresponseequation[4]foranonuniformhardspheresysteminageneralexternalfieldφ(r),withchemicalpotentialµB,inverseBtemperatureβ=(kBT)−1andassociateddensityρ(r;µ,[φ])≡ρ(r):

−βδφ(r1)=󰀅

dr2χ−1(r1,r2;[ρ])δρ(r2).(1)Thisrelatessmallperturbationsinthedensityandfield

throughthe(inverse)linearresponsefunctionχ−1(r1,r2;[ρ])≡δ(r1−r2)/ρ(r1)−c(r1,r2;[ρ]).

(2)

Herec(r1,r2;[ρ])isthedirectcorrelationfunctionofthenonuniformhardspheresystem.Thenotation[ρ]indi-catesthatthesecorrelationfunctionsarenonlocalfunc-tionalsofthedensityρ(r).

2

Sincewewanttofocusontheeffectsoftheperturbingfield,wehaveusedtheinverseformoflinearresponsetheory[5]inEq.(1),wherethefieldappearsexplicitlyonlyonthelefthandside,evaluatedatr1.Thispro-videsmanyadvantagesindealingwithlargefieldper-turbations,aswillsoonbecomeapparent.Inmostcaseswewillconsiderperturbationsaboutauniformsystemwithchemicalpotentialµanddensityρ(µ)≡ρ(r;µ,[0]).Whenusingthissimplifiednotationρ(µ)shouldnotbeconfusedwithρ(r)≡ρ(r;µB,[φ]).Similarly,wewillletµ(ρ)denotethechemicalpotentialoftheuniformfluidasafunctionofdensityρ.Inauniformsystemthedirectcorrelationfunctioncwilltakethesimpleformc(r12;ρ),wherer12≡|r1−r2|.

ButhowcanweuseEq.(1)todescribethedensityresponsetoalargefieldperturbationsuchasthehardcorefieldofinteresthere?Thislinearrelationbetweena(possiblyinfinite)externalfieldperturbationonthelefthandsideandthefiniteinduceddensitychangeontherightmustcertainlyfailforvaluesofr1wherethefieldisverylarge.Conversely,Eq.(1)shouldbemostaccurateforthosevaluesofr1wherethefieldissmall—inparticularwherethefieldvanishes—andthenthroughtheintegrationoverallr2itrelatesdensitychangesinregionswherethefieldvanishestodensitychangesintheregionswherethefieldisnonzero.

Totreatlargefields,wenotethatforanygivenr1wecanlocallyimposetheoptimalconditionthatthefieldperturbationvanishesbyintroducingashiftedchemicalpotential

µr1≡µB−φ(r1),

(3)

andashiftedexternalfield

φr1(r)≡φ(r)−φ(r1).

(4)Sincethereisanarbitraryzeroofenergyandaconstantexternalfieldactslikeashiftofthechemicalpotentialinthegrandensemble,wemakenophysicalchangesifweshiftbothfunctionsbythesameamount.Inparticularρ(r;µB,[φ])=ρ(r;µr1,[φr1]).

Thesuperscriptr1inµr1indicatesaparticularvalueofthechemicalpotential,whichfromEq.(3)dependsparametricallyonr1throughthelocalvalueofthefield.Whenφ(r1)vanishes,thenµr1reducestoµB.Wedefineρr1,thehydrostaticdensity,by

ρr1≡ρ(r;µr1,[0])=ρ(µr1).

(5)

Thusρr1isthedensityoftheuniformfluidinzerofieldattheshiftedchemicalpotentialµr1;equivalentlyρr1satisfies

µ(ρr1)=µr1=µB−φ(r1).

(6)

Thusfar,wehavehavemerelyintroducedanequiva-lent(andapparentlymorecomplicated!)wayofdescrib-ingthesystemintermsofashiftedfieldandashifted

chemicalpotential.Howeverthisperspectiveimmedi-atelysuggestsaverysimplefirstapproximationtothedensityresponsetoaslowlyvaryingexternalfield.Sinceφr1(r)byconstructionvanishesforr=r1,ifφr1(r)issuf-ficientlyslowlyvarying,thentheregionaroundr1withinacorrelationlengthisessentiallyinzerofield.Inthatcasetheuniformhydrostaticdensityρr1isclearlyagoodapproximationtoρ(r1),theexactinduceddensityatr1.Moreover,whenthefieldismorerapidlyvarying,itisnaturaltointroduceasecondandevenmoreaccurateapproximationtothedensityresponse.

Thehydrostaticdensityρr1takesaccountonlyofthelocalvalueofthefieldatr1byashiftofthechemicalpo-tential.TheHLRequationimprovesonthis“localfield”approximationbyusinglinearresponsetheorytodeter-minethedensitychangefromthehydrostaticdensityin-ducedbynonlocalvaluesoftheshiftedfieldφr1(r).Thusstartingfromtheuniformdensityρr1,weassumealinearresponse1totheshiftedfield,replacingχ−1(r1,r2;[ρ])byχ−(r12;ρr1)inEq.(1)andsettingδφ(r)=φr1(r)andδρ(r2)=ρ(r2)−ρr1.ThentheleftsideofEq.(1)van-ishes(givingtheoptimallinearresponsecondition),andwehave

0=󰀅

dr2χ−1(r12;ρr1)[ρ(r2)−ρr1],(7)whichcanberewrittenexactlyusingEq.(2)as

ρ(r1)=ρr1

+ρr1󰀅dr2c(r12;ρr1)[ρ(r2)−ρr1].

(8)

Thisisourfinalresult,whichwerefertoastheHLRequation.Weviewthisasanintegralequationrelatingthehydrostaticdensityρr1tothefulldensityρ(r)andsolveitself-consistentlyforallr1.Whenφ(r1)isknown,wecanimmediatelydetermineρr1ateachr1fromthelocalrelationinEq.(6),andthensolveEq.(8)byit-erationforallr1todeterminethefulldensityresponseρ(r).Conversely,foragivenequilibriumdensitydistri-butionρ(r)wecanuseHLRequationtodeterminetheassociatedfieldφ(r).ThisinversesolutionofEq.(8)isparticularlyeasytocarryout,sincewecandeterminethelocalfieldateachr1separately,withoutiteration.Accurateresultshavebeenobtainedformanytestcaseswithstrongrepulsiveorattractivefields[2,6].

Thisrequiresinparticularexpressionsforµ(ρ)andforthedirectcorrelationfunctionc(r12;ρ)oftheuniformhardspherefluid.InthispaperwewillusethePercus-Yevick(PY)[7]approximationforc(r12;ρ).Thissamefunctionalsoarisesfromaself-consistentsolutionoftheHLRequation,wherethedensityresponsetoahardcorefieldwithRv=σ(equivalenttofixingasolventparticleattheorigin)isrelatedtotheuniformfluidpaircorre-lationfunction.Thusthisself-consistentuseoftheHLRequationprovidesaphysicallysuggestivewayofderivingthePYresultforc(r12;ρ)[2].ThePYc(r12;ρ)hasaverysimpleanalyticalformandprovessufficientlyaccu-rateforourpurposeshere.Evenbetterresultscanbefoundifoneusestheveryaccurateexpressionsforthe

3

bulkc(r12;ρ)andµ(ρ)asgivenbytheGMSAtheory[8]

asinputstotheHLRequation.

B.

RelationtothePYapproximationforahard

coresolute

Asphericalcavityactslikeahardcoreexternalfieldφthatexcludesthecentersofallsolventmoleculesfromthecavityregion.Wetakethecenterofthecavityastheoriginofourcoordinatesystem,sothatalldistancesaremeasuredrelativetothecavitycenter.Notethatboththehydrostaticdensityρr1fromEq.(5)andthefulldensityresponseρ(r1)fromEq.(8)vanishwheneverr1islocatedinthecavity.Thisexact“hardcorecondition”comesoutnaturallyfromthetheory,anddoesnothavetobeimposedbyhandasintheGFMortheGMSAapproaches.

TomakecontactwiththePYapproximation,re-callthatthecavity-solventdirectcorrelationfunctionC(r1;ρB,Rv)forthissystemexactlysatisfies

C(r1;ρB

,Rv)=ThusC(r󰀅

dr2χ−1(r12;ρB)[ρ(r2)−ρB].(9)

1)isthefunctionthatreplaces−βδφ(r1)sothatthelinearresponseequation(1)givesexactresultswhenthefulldensitychangerelativetothebulkisusedontherighthandside.WhenthisiscomparedtotheHLRequation(7)forr1outsidethecavityregion(whereρr1=ρBandφ=0)weseethattheHLRequationpredictsthatC(r1)vanishes.ThusfortheHLRequationρ(r1)vanishesinsidethecavityregionandC(r1)vanishesoutside.ThisisthesameasthePYapproximationforthehardcorecavity-solventsystem[2,9].

IfRvisgreaterthanσ/2,withσthesolventhardcorediameter,thenanequivalentexclusionisachievedbyre-placingthehardcoreexternalfieldbyahardcoresoluteparticlewith(additive)diameter

σv≡2Rv−σ.

(10)

FromthisitfollowsthatifthePYapproximationforthebulkcorχ−1isused,thedensityρ(r)predictedbytheHLRequationisidenticaltothatgivenbythePYequa-tionforthesolute-solventpaircorrelationfunctionforabinaryhardspheremixtureinthelimitthattheconcen-trationofthesolutespeciesgoestozero[10].SinceanexactanalyticalsolutionofthePYequationforabinaryHSmixtureatarbitraryconcentrationsisknown[11],wecantakeadvantageoftheseresultswhencomputingtheexcessgrandfreeenergy.

ThisequalityofsolutionsoftheHLRequationandthePYmixtureequationholdsonlyforhardcorecavityfieldswithradiusRv≥σ/2orσv≥0.AsdiscussedbelowinSec.V,fortinycavitieswithRv≤σ/2theHLRequa-tioncanbesolveddirectlyandgivesexactresultsforthedensityresponseifexactbulkcorrelationfunctionsareused,andveryaccurateresultswhenthePYapproxima-tionforthebulkcisused.However,thecorresponding

PYmixturesolutionsinthisrangeofRv(arrivedatfor-mallybytakingσvinEq.(10)tobenegative)aremuchlessaccurate.ThisinaccuracyarisesfromusingthePYmixturesolutionsfornegativeσv.ThedirectsolutionofthePYcavity-soluteequationforatinycavity,whereagivenapproximationforthebulkcisusedalongwiththePYapproximationthatC(r1)vanishesoutsidethecavityandρ(r1)vanishesinside,givesthesameaccurateresultsastheHLRequation.However,formoregeneralexternalfields,theHLRequationisquitedistinctfromthePYapproximation,andisgenerallymoreaccurate;ithasgivengoodresultsforawiderangeoffields[2,6,9].ThisadditionalflexibilityoftheHLRequationwillberequiredlaterinthispaperwhenwediscussalternatedensityroutestothefreeenergy.

III.

THERMODYNAMICPATHWAYSTOTHE

FREEENERGY

Inthissectionwediscussthreedifferentexactthermo-dynamicpathwaysforobtainingtheexcessfreeenergyofinsertingacavityintoahardspherefluid.Thefirsttwoarewellknown,andthethirddescribesanewdensityroutethatmayhavesomecomputationaladvantagesinotherapplications.WeusetheHLRequationtoprovidetheneededstructuralinformationinallcases.Webelieveourcalculationhererepresentsthefirstuseofadensityroutetoobtaintheexcessfreeenergyforthissystem.WethendescribeasimplebutlessaccurateroutetothefreeenergybasedonuseofthepartitionfunctionfortheGFM.

A.

Compressibilityroute

Inthisroutetheexcessfreeenergyisdeterminedby

varyingthechemicalpotentialofthesystemwhiletheexternalfieldφ(r)producingthecavitywithradiusRvremainsconstant.Inthegrandcanonicalensembletheaveragenumberofparticles󰀍N󰀎isgivenby

∂Ω

4

ρ=vpB,

(14)

onusingthethermodynamicrelationρ(∂µ/∂ρ)T=(∂p/∂ρ)T.ThisexactleadingordertermforlargevisdeterminedBwhenusingthecompressibilityroutesothatpistheuniformfluidpressurecalculatedbythecom-pressibilityroute[12].

ThetermincurlybracketsinEq.(13)canberewritteninamoreconvenientformforcalculationsbyusingtheinverserelationtoEq.(9)forageneralchemicalpotentialµ:

ρ(r1;µ,[φ])−ρ(µ)=󰀅

dr2χ(r12;µ)C(r2;ρ(µ),Rv),

2

(15)

whereχ(r12;µ)≡ρδ(r1−r2)+ρ[g(r12)−1]istheusuallinearresponsefunctionoftheuniformsolventfluidandg(r)istheradialdistributionfunction.SubstitutingintoEq.(13)andcarryingouttheintegrationoverr1,wehavetheformallyexactresult[13]

µB

β∆Ωv=−β

dµχˆ(0,µ)

dr2C(r2;ρ(µ),Rv)

−∞

ρB

󰀅

=−

󰀅

󰀅

dρC

ˆ(0;ρ,Rv).(16)

0

Hereχˆ(0,µ)isthek=0valueoftheofχ,withasimilardefinitionforC

ˆFouriertransform

(0;ρ,Rv).Inthelastequalityweusedtheuniformfluidcompressibilityrelationβχˆ(0,µ)=dρ(µ)/dµtochangevariablestoanintegrationoverdensity.WewillexplicitlysolvetheHLRequationforRv≤σ/2inSec.Vbelow,andfromtheequivalencebetweentheHLRequationandPYmixtureequationforRv≥σ/2,wecanusethethePYmixtureequationtoobtainC

ˆexactsolutionof

atlargerRv.ThuswecananalyticallycarryouttheintegrationinEq.(16)forallRv.

B.

Virialroute

Wenowconsideradifferentthermodynamicpathway,whichwasfirstusedinscaledparticletheory[14,15].HerewekeepthechemicalpotentialfixedatµBandvarytherangeoftheexternalhardcorefieldbyascalingparameterλ,definingφλ(r)≡φ(r/λ).Forthehardcorecavityfieldofinteresthere,asλisvariedfrom0to1theradiusoftheexclusionzonethenvariesfrom0toRv.Sincethedensityisgenerallyrelatedtotheexternalfield

inthegrandensembleby

δΩ

∂λ

.(18)

Hereρλ(r)≡ρ(r;µB,[φλ]).Thisformulaisquitegeneralandholdsforanyλ-dependentpotentialthatvanishesforλ=0.Byexploitingspecialpropertiesofthescaledhardcorepotential(thederivativeoftheBoltzmannfactorofahardcorepotentialisadeltafunction)itiseasytoshowthatEq.(18)canbeexactlyrewrittenas

β∆Ωv=4πR3

v󰀅1dλλ2ρλ(λRv).(19)

0

Hereρλ(λRv)isthecontactdensityatthesurfaceofthe

scaledexclusionzonewithradiusλRv.Asinthecom-pressibilityroute,wecananalyticallycarryouttheinte-grationinthevirialroutetoobtainsolvationfreeener-giesforcavitiesforallRv.TheequivalentPYsolutionforbinaryhardspheremixturesisusedforthecontactdensitiesforallλRv’slargerthanσ/2,whiletheexplicitsolutionoftheHLRequationisusedfortheλRv’ssmallerthanσ/2.

C.

Densityroutes

Inadditiontotheseparticularpathways,wecanalsoimaginedirectlychangingtheequilibriumdensityfromρBtoρ(r)oversomeconvenientpathwayspecifiedbyacouplingparameterλ,whiletakingaccountoftheasso-ciatedchangesinΩandφ(r).IntegratingEq.(18)bypartstomakeρλ(r)explicitlythecontrollingvariable,wehaveexactly

β∆Ωv=󰀅drρ(r)φ(r)−

󰀅1dλ󰀅

drφ∂ρλ(r)λ(r)

0

5

ρλ(r),etc.Forthispathwaywehave∂ρλ(r)

∂λ

.

(23)

BothfactorsontherightsideofEq.(23)areeasytodeterminefromEq.(22).ThenumericalintegrationinEq.(20)cannowbecarriedoutstraightforwardlysince

theρ1/2

λ(r)factorinEq.(23)willcause∂ρλ(r)/∂λtotendtozeroexponentiallyfastwhereverφλ(r)becomeslarge.Resultsusingthispatharereportedbelow.Otherpathsimplementingthisideaexistandwehavenottriedtomakeanoptimalchoice.

D.

GaussianFieldModel

Finallyweconsideranalternativeapproach,theGaus-sianfieldmodel(GFM)[3],thatforhardcorefieldshas

manycommonelementswiththeHLRmethod.TheGFMdescribesdensityfluctuationsinauniformfluidwithaveragedensityρbyaneffectivequadraticHamil-tonianHB=

kBT

Fourierrepresentationfortheδ-functionsandformallyintegratingρˇ(r)from−∞to∞yieldsaGaussianap-proximationforthepartitionfunction,asdiscussedbe-low.

Moreover,usingthesameapproximations,byfunction-allydifferentiatingΞvwithrespecttothefield,oneob-tainsthenonuniformsingletdensityintheGFM.Inthecaseofapurehardcorefieldwithφ1=0,thedensityresponsetoacavitywithradiusRvisgivenρ(r1)=ρB−ρB

󰀅dr2󰀅

by

dr3χ(r12;µB)χ−1in(r2,r3).

v

v

(26)

Theintegrationsarerestrictedtothecavityregion,asin-dicatedbythesubscriptvontheintegralsymbols.Hereχ−1inistheinverseBoftherestrictedlinearresponsefunc-tionχin(r12;µ),whichequalsχ(r12;µB)ifbothr1andr2areinthecavityregionandequalszerootherwise.

Thusχ−1

when󰀅

inisnonzeroonlyinsidethecavityandsatisfies

dr2χ(r12;µB)χ−1

(27)v

in(r2,r3)=δ(r1−r3),

bothr1andr3areinthecavityregion.ComparingEq.(26)toEq.(15),onecanidentifythecavity-solventdirectcorrelationfunctionintheGFMas

C(r2)=−ρB

󰀅

dr3χ−1in(r2,r3).

(28)v

Bypropertiesofχ−1

regionandin,theGFMC(r)vanishesoutsidethecavityρ(r)inEq.(26)vanishesinside.ThustheGFMgivesexactlythesamesolutionforthedensityresponsetoahardcoreexternalfieldasthePYortheHLRequations.(Inthemoregeneralcasewherethereisanadditionalperturbationpotentialφ1,thevar-iousapproachesdiffer.TheGFMcanbeshowntotreatthesoftertailusingthemeansphericalapproximation,whichisdifferentfromandgenerallylessaccuratethanthehydrostaticshiftusedintheHLRequation.)

ThusforcavitiesorhardcoresolutesallstructurallybasedroutestotheexcessfreeenergywillgivethesameresultswhenusingtheGFMortheHLRequation.Inad-dition,theGFMpartitionfunctionalsoprovidesadirectandverysimpleroutetothefreeenergy[3].HoweverthisrouteisinherentlyapproximatebecauseEq.(25)isnotreallyafreeenergyfunctionalforthewholeconfigura-tionspace,butratherarestrictedonedescribingonlythespaceoutsideofthespecifiedcavityregion.Thisfunc-tionalmaylegitimatelydescribesubsequentsmallpertur-bationsofφ1outsideofthecavity,butitdoesnotcontainenoughinformationaboutthefunctionaldependenceonthecavityvolumeinthefirstplace.Moreovertheapprox-imationsmadeinevaluatingtheGFMpartitionfunctiondonotbuildinthefactthatingrandcanonicalensemble,thethermodynamicpropertiesshoulddependonµ−φratherthanonµandφindividually.Thusitisalsonotconsistentwiththefreeenergypredictionfromthecom-pressibilityroute,whichintegratesoverstatesatdiffer-entchemicalpotentialsbutwithafixedhardcorealwayspresent.

6

EvaluatingtheGaussianintegralsinEq.(25),theex-cessgrandfreeenergyarisingfromacavitywithradius

Rvisgivenby

β∆Ωv=−logΞv/ΞB

=−

1HereΞv[N]istheconstrainedpartition󰀆Nmax

N=0

Ξv[N]

.(30)

functionwhen

Nparticlesareinthespecifiedvolume.Thisformulahasbeensuccessfullyusedintheinformationtheoryap-proachdevelopedbyHummer,Prattandcoworkers[17].IftheGFMisusedtoapproximatethepartitionfunctionsinEq.(30)byreplacingtheproductofδ-functionsδ[󰀇

inEq.(25)bythesingleaverageconstraintvdrρ

ˆ(r)−N],onearrivesataGaussianapproxima-tion[17,18]forΞv[N].This“discrete”approximationforβ∆ΩvbasedonthisuseoftheGFMis

¯2/2χv

β∆Ωv=−log

e−N

nodefixedatr=Rv,butmadeorthogonaltothefirst(constant)basisfunction.Thesecondbasisfunctionisthusalinearcombinationofj0(Rvr/π)andaconstant.Thiswasintroducedtotesttheaccuracyoftheoneba-sisfunctionapproximationpreviouslyusedandhopefullywillgiveimprovedresultsforlargerRv.

IV.

RESULTSFORLARGERCAVITIESWITH

Rv>σ/2

WenowdiscussthesolvationfreeenergiesgivenbythevariouspathwaysforacavitywithRv>σ/2,equiv-alenttoaphysicallyrealizablehardcoresoluteparticlewithdiameterσv>0.(ResultsfortinycavitieswithRv≤σ/2arediscussedinSec.Vbelow.)Weusethesimplestversionofthetheory,wherethePYapproxima-tionisusedfortheuniformfluidcorrelationfunctions.Fig.(1)givethesolvationfreeenergyβ∆Ωvfromthedifferentpathwaysasafunctionofthepackingfractionη=πρBσ3/6forRv/σ=1,1.5,1.75,wheretheresultscanbecomparedtocomputersimulations[19]ofCrooksandChandler.Notethatthevolumeofasphericalcav-itywithRv=1.75σisover42timesgreaterthanthatofasolventparticle.ForRv=σtheresultsalsogivetheexcesschemicalpotentialasafunctionofdensityfortheuniformhardspherefluid.

Asdiscussedabove,wecanobtainanalyticalexpres-sionsfor∆Ωvforboththecompressibilityandvirialroutes.Thecompressibilityroutegivesβ∆Ω(−2+7η−11η2)

Rv=

ηv

(1−η)3

Rv2

Rv3

(1−

η)3

(1−

η)3

2(1−η)3−log(1−η)−

18η2(1−η)

8η(1+η−2η2)

σ2

+

σ3

.(34)

ResultsforthedensityrouteandfortheGFMarecom-putednumerically.

InthisrangeofRvthereisgoodagreementexceptatthehighestdensitiesbetweenthecompressibility,virialanddensityroutes,withbestresultsoverallarisingfromthecompressibilityroute.ThedirectGFMpredictionsinFig.(2)fromthepartitionfunctionarelesssatisfactory.BoththediscreteandthecontinuumversionsoftheGFMgiveresultsthatapproachzeroincorrectlyasρB→0,andthecontinuumvaluesareconsistentlytoolargeathighdensitywhilethediscretevaluesaretoosmall.ThediscreteversionoftheGFMusesaGaussianapproxi-mationfortheconstrainedpartitionfunctionsandgiveslessaccurateresultsthancouldbeobtainedfromafittoaccuratevaluesof󰀍N󰀎and󰀍N2󰀎asintheinformationtheoryapproach[17].

7

20compressibility routevirial routeRv=1.75σ15density routesimulationΩ∆Rv=1.5σβ105Rv=σ000.10.2η0.30.4FIG.1:Theexcessfreeenergypredictedbythethreether-modynamicroutesforcavityradiiRv=σ,1.5σand1.75σ,comparedwithsimulationdata.ηisthepackingfractionandisequaltoπρBσ3/6.

20GFM: discreteRv=1.75σGFM: continuum15simulationΩ∆βRv=1.5σ105Rv=σ000.10.2η0.30.4FIG.2:Theexcessfreeenergypredictionsbyboththedis-creteandthecontinuumversionsoftheGFM,plottedforthesameRvvaluesandonthesamescaleasinFig.1.

AsRv→∞,thesurfaceofthecavityapproachesthatofaplanarwall.AsshowninEq.(14)thereisadivergingtermintheexcessfreeenergygivenbythecavityvolume

v=4πR3

v/3timesthebulkpressurepB,andthemoreinterestingquantitytocalculateisthesurfacetermγv,givenby

βγβ∆Ωv=

v−βpBv

15density routecompressibility∞virial routeγπ10simulation fitting formulaβ4-5000.10.2η0.30.4FIG.3:Surfacetensionpredictedbythethermodynamicroutescomparedwiththesimulationfittingformula.

yieldsthesamebulkpressureasgivenbytheaccurateuniformfluidPYcompressibilityequationofstate.Thevirialroutedoesnotautomaticallybuildinthisconsis-tency,andthepressurepredictedfromthecoefficienta3islessaccuratethantheuniformfluidPYvirialequationofstate.

Thecoefficientofthequadratictermthengivesthesurfacetensionβγ∞=a2/4πσ2.Usingthecompressibil-ityroutewefind

−4πβγ∞σ2

=

18η2(1+η)

(1−η)3

.(37)

Theγ∞obtainedbythecompressibilityroutecoincideswiththatgivenbyscaledparticletheory[14,15,20].Weobtainedγ∞numericallyforthedensityroute.

Theseresultscanbecomparedtothequasi-exactfor-mula[21]

−4πβγ∞σ2

=

18η2(1+

44

2

)

8

(1−ρBv)

(43)

forroutsidev,withρ(r)=0forrinside.Hereg(r)istheexactradialdistributionfunctionfortheuniformsolventfluid.BNotethatthecontactdensityρ(Rv)=ρB/(1−ρv)isexactlydeterminedindependentofthedetailsofg(r),sincethecorrespondingg(|r′−r|)inEq.(43)vanishesforallr′insidev.Thisresultisvalidaslongastheinsertedregionvcanholdnomorethanonesolventparticle,soEq.(43)alsoholdsforsolventswithahardcorepairpotentialplusasoftertail.

B.

StructuralpredictionsoftheGFMandHLR

methods

NowletusexaminetheGFMresultinEq.(26)forthecaseofadensityresponsetoatinycavity.Sinceg(|r1−r2|)=0whenbothr1andr2areinv,χin(r1,r2)=ρBδ(r1−r2)−(ρB)2

then

insidev.ItiseasyseefromEq.(27)thattheinversefunctionχ−1

to

inthenhasthesimpleform[24]

χ−1in(r1,r2)=

δ(r1−r2)

1−ρBv

.(44)

exact0.50.05density route0.04GFM: discrete0.40.03GFM: continuum0.02Rv=0.3σΩ0.01∆0.3β000.10.20.30.40.2Rv=0.5σ0.1000.10.2η0.30.4FIG.4:Thecompressibilityandvirialroutesareexactforthetinycavityregime.ThedensityrouteisplottedalongwiththeGFMresultstocomparewiththeexactfreeenergypredictionsforRv=0.3σand0.5σ.

WhenEq.(44)isinsertedintoEq.(26)toobtaintheGFMdensityresponsetoatinycavity,werecovertheexactexpressionforρ(r)giveninEq.(43),providedthattheexactuniformfluidg(r)orc(r)isused.Ifapproxi-mate(sayPY)resultsareusedtodescribetheuniformfluidresponsefunctionsthenstrictlyspeakingtheGFMandHLRpredictionsforρ(r)willnotbeexactforallr.However,thecontactdensityρ(Rv)isexactinanycase,since,asnotedearlier,thisrequiresonlythattheap-proximateg(r)vanishinsidethecavityregion.BecauseoftheequivalencebetweenthestructuralpredictionsoftheGFMandtheHLRequation,thesesameconclusionsholdfortheHLRequation.Inparticular,thedensityre-sponseoutsideatinycavityisexactlydescribedbylinearresponsetheoryabouttheuniformbulksystem.

C.

Solvationfreeenergyfromthermodynamic

pathways

Moreover,thesetheoriesgivetheexactresultofEq.(42)forthesolvationfreeenergyβ∆Ωv,independentofpossibleerrorsing(r),forallstructurallybasedthermo-dynamicpathwaysthatuseonlytinyhardcorefields.Inparticular,thevirialrouteinEq.(19)givesexactresultsforβ∆Ωvsincethisrequiresonlythe(exact)contactval-uesρλ(λRv).ThecompressibilityrouteaswritteninEq.(16)requiresC(r1),whichtheexactχ−1

fromEq.(28)dependsonlyon

ininEq.(44).Bothresultsrequireonlythatthebulkg(r)vanishforr<σ,andareunaffectedbyanyerrorsatlargerr.Thisisinaccordwithourgeneralsup-positionthatparticularthermodynamicpathwayscanberelativelyinsensitivetoerrorsinthestructuraltheory.Howeverthechoiceofpathwayisimportant.Thusthedensityroutesdonotgiveβ∆Ωvexactlyeveninthetinycavityregime.Thisisbecauseasρλ(r)isvaried,thecorrespondingφλ(r)ingeneralisnotapurehardcore

9

fieldandspreadsoutsidethecavityregion.NeithertheGFMnortheHLRtheoriescantreatthesesofterandlonger-rangedfieldsexactlyevenifexactuniformfluidcorrelationfunctionsareused.

D.

SolvationfreeenergyfromtheGFMpartition

function

Theβ∆ΩvobtaineddirectlybytakingthelogarithmofthepartitionfunctioninEq.(29)canbeexpressedanalyticallyfortinycavitiesas

β∆Ω1

ρBv

v=

2

e−N¯/[2(1−N¯)]+e−(1−N

¯)/[2N¯],(46)

whereN

¯≡ρBv.Thishasthepeculiarbehaviorasv→0thatallderivativesvanish,andsoissignificantlyinerrorinthisregime.SeeFig.4forcomparisonwiththeexactanswer.

VI.

CONCLUSION

Wehavediscussedseveraldifferentthermodynamicroutesthatcanbeusedtodeterminethesolvationfreeenergyforinsertingbothsmallandlargecavitiesintoahardspherefluid.GenerallyaccurateresultsarefoundbyusingtheHLRequationtorelatethedensitiesandas-sociatedfieldsovertheintermediatestatesofthediffer-entpathways.WealsoconsideredtheGFMandshowedthatitgivesresultsequivalenttotheHLRequationforthedensityresponseinducedbyarigidcavity.HowevertheGFMcannotdescribethesofterexternalpotentialsandintermediatedensitiesneededforthedensityroutesandformoregeneralthermodynamicpathways.DirectuseoftheapproximatepartitionfunctionoftheGFMtodeterminethesolvationthefreeenergyofacavityalsogiveslessaccurateresults.

BestresultsusingtheHLRequationforthesolvationfreeenergyofacavityarefoundfromthecompressibilityanddensityroutes.Thiscanbeunderstoodsincemoststatesalongtheseroutesrequirethedensityresponseatintermediatedensitiesanddistancesawayfromthecav-itywheretheHLRequationismostaccurate.TheHLRequationcanalsobeusedformoregeneralsoluteswithdifferentshapesorlongerrangedattractiveinteractionsandinapplicationswhereotherpathwaysmaybemoreuseful.Combinedwithanappropriatepathwayitrepre-sentsaversatileandcomputationallyefficientmethodfor

10

determiningboththestructureandthethermodynamicsofnonuniformfluids.

WethankKirillKatsov,MichaelFisher,JimHender-son,andLawrencePrattforhelpfulcommentsandGavinCrooksforsendingusthesimulationdatathatisusedintheplotsoffinitesizecavities.ThisworkwassupportedbytheNationalScienceFoundationthroughGrantCHE-0111104.

APPENDIX

Inthe“wall”limitwhereRv→∞,thesurfacetensiongivenbythecompressibilityrouteisdeterminedfrom

γ∞=−

󰀅

ρB

∂µ

0

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- esig.cn 版权所有

违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务