搜索
您的当前位置:首页二项分布与两点分布 超几何分布 正态分布 的区别

二项分布与两点分布 超几何分布 正态分布 的区别

来源:世旅网
用个例子解答吧:假设一批产品有100件,其中次品为10件。

那么:

(1)从中抽取一件产品,为正品的概率? 像这种可能结果只有两种(抽的结果正品或次品)情况下就可以归纳为两点分布。

(2)有放回的抽样,抽n次,出现正品数的分布。 这个就是二项分布了,首先,这n次试验可能出现的正品数为0~n;它相当于做了n次试验,每次都是两点分布,也就是说你这抽取n次,每次是正品的概率都是0.9。

(3)如果不放回抽取m(≤100)个,这m件产品次品数的分布如何? 此问就是超几何分布了,当然这个时候要讨论m与10谁大,以便确认分布的可能取值,这里不赘述了。

(4)正态分布是自然界最常见的一种分布。该分布由两个参数——平均值和方差决定。它和其它各种分布都有着直接或间接的联系,比如说此题中二项分布,其实每个人抽取n次,最后的结果都是不尽相同的,这是由于抽样误差引起的。但是,如果好多人(N)都做这么一次试验(每个人都抽n次,并记录下正品数),那么这N个人抽到的正品数的分布就是一个正态分布了。

(正太分布往往是和其它分布的极限分布联系起来的,也就是说N→∞;如果N为有限的<假设为4个>那么N的分布最复杂也就是4个结果)

超几何分布和二项分布都是离散型分布

超几何分布和二项分布的区别:

超几何分布需要知道总体的容量,而二项分布不需要;

超几何分布是不放回抽取,而二项分布是放回抽取(独立重复)

当总体的容量非常大时,超几何分布近似于二项分布.........

阅读(131)| 评论(1)

因篇幅问题不能全部显示,请点此查看更多更全内容

Top