第一部分:《整式的加减》知识点 一、代数式与有理式
1、用运算符号把数或表示数的字母连结而成的式子,叫做代数式。单独的一个数或字母也是代数式。 2、整式和分式统称为有理式。
3、含有加、减、乘、除、乘方运算的代数式叫做有理式。 二、整式和分式
1、没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。 2、有除法运算并且除式中含有字母的有理式叫做分式。 三、单项式与多项式
1、没有加减运算的整式叫做单项式。(数字与字母的积---包括单独的一个数或字母)
2、几个单项式的和,叫做多项式。其中每个单项式叫做多项式的项,不含字母的项叫做常数项。
说明:①根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。划分代数式类别时,是从外形来看。 单项式
1、都是数字与字母的乘积的代数式叫做单项式。 2、单项式的数字因数叫做单项式的系数。
3、单项式中所有字母的指数和叫做单项式的次数。 4、单独一个数或一个字母也是单项式。
5、只含有字母因式的单项式的系数是1或―1。 6、单独的一个数字是单项式,它的系数是它本身。 7、单独的一个非零常数的次数是0。
8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。 9、单项式的系数包括它前面的符号。
10、单项式的系数是带分数时,应化成假分数。
11、单项式的系数是1或―1时,通常省略数字“1”。 12、单项式的次数仅与字母有关,与单项式的系数无关。 多项式
1、几个单项式的和叫做多项式。
2、多项式中的每一个单项式叫做多项式的项。 3、多项式中不含字母的项叫做常数项。 4、一个多项式有几项,就叫做几项式。 5、多项式的每一项都包括项前面的符号。 6、多项式没有系数的概念,但有次数的概念。
7、多项式中次数最高的项的次数,叫做这个多项式的次数。 整式
1、单项式和多项式统称为整式。 2、单项式或多项式都是整式。 3、整式不一定是单项式。 4、整式不一定是多项式。
5、分母中含有字母的代数式不是整式;而是今后将要学习的分式。
四、整式的加减
1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。
去括号法则:如果括号前是“十”号,把括号和它前面的“+”号去掉,括号里各项都不变符号;如果括号前是“一”号,把括号和它前面的“一”号去掉,括号里各项都改变符号。
2、同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。 合并同类项:
1).合并同类项的概念:
把多项式中的同类项合并成一项叫做合并同类项。 2).合并同类项的法则:
同类项的系数相加,所得结果作为系数,字母和字母的指数不变。 3).合并同类项步骤:
1
a.准确的找出同类项。
b.逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变。 c.写出合并后的结果。 4).在掌握合并同类项时注意:
a.如果两个同类项的系数互为相反数,合并同类项后,结果为0. b.不要漏掉不能合并的项。
c.只要不再有同类项,就是结果(可能是单项式,也可能是多项式)。 说明:合并同类项的关键是正确判断同类项。
3、几个整式相加减的一般步骤:
1)列出代数式:用括号把每个整式括起来,再用加减号连接。 2)按去括号法则去括号。 3)合并同类项。
4、代数式求值的一般步骤: (1)代数式化简 (2)代入计算
(3)对于某些特殊的代数式,可采用“整体代入”进行计算。 五、同底数幂的乘法
nn
1、n个相同因式(或因数)a相乘,记作a,读作a的n次方(幂),其中a为底数,n为指数,a的结果叫做幂。 2、底数相同的幂叫做同底数幂。
mnm+n
3、同底数幂乘法的运算法则:同底数幂相乘,底数不变,指数相加。即:a﹒a=a。
m+nmn
4、此法则也可以逆用,即:a = a﹒a。
5、开始底数不相同的幂的乘法,如果可以化成底数相同的幂的乘法,先化成同底数幂再运用法则。 六、幂的乘方
mnm
1、幂的乘方是指几个相同的幂相乘。(a)表示n个a相乘。
mnmn
2、幂的乘方运算法则:幂的乘方,底数不变,指数相乘。(a) =a。
mnmnnm
3、此法则也可以逆用,即:a =(a)=(a)。 七、积的乘方
1、积的乘方是指底数是乘积形式的乘方。
nnn
2、积的乘方运算法则:积的乘方,等于把积中的每个因式分别乘方,然后把所得的幂相乘。即(ab)=ab。
nnn
3、此法则也可以逆用,即:ab =(ab)。 八、同底数幂的除法
mnm-n
1、同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即:a÷a=a(a≠0)。
m-nmn
2、此法则也可以逆用,即:a = a÷a(a≠0)。 九、零指数幂
0
1、零指数幂的意义:任何不等于0的数的0次幂都等于1,即:a=1(a≠0)。 十、负指数幂
1、任何不等于零的数的―p次幂,等于这个数的p次幂的倒数。
注:在同底数幂的除法、零指数幂、
负指数幂中底数不为0。 十一、整式的乘法
(一)单项式与单项式相乘
1、单项式乘法法则:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。
2、系数相乘时,注意符号。
3、相同字母的幂相乘时,底数不变,指数相加。
4、对于只在一个单项式中含有的字母,连同它的指数一起写在积里,作为积的因式。 5、单项式乘以单项式的结果仍是单项式。
6、单项式的乘法法则对于三个或三个以上的单项式相乘同样适用。
(二)单项式与多项式相乘
1、单项式与多项式乘法法则:单项式与多项式相乘,就是根据分配率用单项式去乘多项式中的每一项,再把所得的积相加。即:m(a+b+c)=ma+mb+mc。
2
2、运算时注意积的符号,多项式的每一项都包括它前面的符号。 3、积是一个多项式,其项数与多项式的项数相同。
4、混合运算中,注意运算顺序,结果有同类项时要合并同类项,从而得到最简结果。 (三)多项式与多项式相乘
1、多项式与多项式乘法法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。即:(m+n)(a+b)=ma+mb+na+nb。
2、多项式与多项式相乘,必须做到不重不漏。相乘时,要按一定的顺序进行,即一个多项式的每一项乘以另一个多项式的每一项。在未合并同类项之前,积的项数等于两个多项式项数的积。
3、多项式的每一项都包含它前面的符号,确定积中每一项的符号时应用“同号得正,异号得负”。 4、运算结果中有同类项的要合并同类项。
5、对于含有同一个字母的一次项系数是1的两个一次二项式相乘时,可以运用下面的公式简化运算:
2
(x+a)(x+b)=x+(a+b)x+ab。 十二、平方差公式
22
1、(a+b)(a-b)=a-b,即:两数和与这两数差的积,等于它们的平方之差。 2、平方差公式中的a、b可以是单项式,也可以是多项式。
22
3、平方差公式可以逆用,即:a-b=(a+b)(a-b)。
4、平方差公式还能简化两数之积的运算,解这类题,首先看两个数能否转化成
22
(a+b)•(a-b)的形式,然后看a与b是否容易计算。 十三、完全平方公式 1、(a±b)=a±2ab+b即:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。 2、公式中的a,b可以是单项式,也可以是多项式。 十四、整式的除法
(一)单项式除以单项式的法则
1、单项式除以单项式的法则:一般地,单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式。
2、根据法则可知,单项式相除与单项式相乘计算方法类似,也是分成系数、相同字母与不相同字母三部分分别进行考虑。
(二)多项式除以单项式的法则
1、多项式除以单项式的法则:多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。 2、多项式除以单项式,注意多项式各项都包括前面的符号。
222第二部分:重点题型总结及应用
题型一 整式的加减运算 例1 已知1a33xy与3y5bx3是同类项,则ab的值为 . 3 例2 计算:(7x2+5x-3)-(5x2-3x+2). 解:原式=7x2+5x-3-5x2+3x-2=2x2+8x-5.
方法 本题考查整式的加减及去括号法则.合并同类项时注意字母和字母的指数不变,只把系数相加减. 题型二 整式的求值
例3 已知(a+2)2+|b+5|=0,求3a2b一[2a2b-(2ab-a2b)-4a2]-ab的值.
例4 已知2a2-3ab=23,4ab+b2=9,求整式8a2+3b2的值.
题型三 整式的应用
例5 图2-3-1是一个长方形试管架,在a cm长的木条上钻了4个圆孔,每个孔的直径为2 cm,则x等于( )
3
A.
a8a16a4a8cm B. cm C. cm D. cm
5555例6 用正三角形和正六边形按如图2-3-2所示的规律拼图案,即从第二个图案开始,每个图案都比上一个图案
多一个正六边形和两个正三角形,则第n个图案中正三角形的个数为 (用含”的代数式表示).
思想方法归纳
1. 整体思想
整体思想就是在考虑问题时,将具有共同特征的某一项或某一类看成一个整体,从宏观上进行分析,抓住问题的整体结构和本质特点,全面关注条件和结论,加以研究、解决,使问题的解答简捷、明快,往往能化繁为简,由难变易,获得解决问题的捷径,从而促进问题的解决. 例1 计算当a=1,b=-2时,代数式
11abab(ab)(ab)的值. 2436
例2 若a2+ab=20,ab-b2=-13,求a2+b2及a2+2ab-b2的值.
2 数形结合思想
例3 如图2-3-3所示,已知四边形ABCD是长方形,分别用整式表示出图中Sl,S2,S3,S4的面积,并表示出长方形ABCD的面积.
中考热点聚焦
考点1 单项式
考点突破:单项式是整式中的基础知识,在中考中的考查一般难度不大,多以选择题或填空题的形式出现.解决此类问题要理解单项式的定义及单项式次数的含义.
23
例1 (2011•柳州)单项式3xy的系数是 .
4
写出含有字母x,y的五次单项式 (只要求写出一个).
例2 若单项式3x2 yn与-2xmy3是同类项,则m+n= . 考点2 列整式表示数量关系
考点突破:一些问题中的数量关系,可列整式表示,列式时要明确要表示的量与已知量之间的关系.中考中对此知识点的考查常以填空题为主.
例3 (2011•湘西州)若一个正方形的边长为a,则这个正方形的周长是 4a .
例4 (2011浙江金华,11,4分)“x与y的差”用代数式可以表示为 .
用代数式表示“a,b两数的平方和”,结果为 . 考点3 找图形的变化规律
考点突破:此类问题是近几年中考的热点,做题时要根据前几个图形的个数找出 规律,并用整式表示出第n个图形的结果.重在考查思维的灵活性和概括能力.
例5 观察下列图形(图2-3-4)及图形所对应的算式,根据你发现的规律计算1+8+16+24+„+8n(n是正整数)的结果为( )
A.(2n+1)2 B.(2n-1)2 C.(n+2)2 D.n2
综合验收评估测试题
一、选择题
l. 在代数式-2x2,3xy,
bxy,,0,mx-ny中,整式的个数为( ) a3A.2 B.3 C.4 D. 5
2. 二下列语句正确的是( )
A.x的次数是0 B.x的系数是0 C. -1是一次单项式 D.-1是单项式 3. 下列不属于同类项的是( ) A.-1和2 B.x2y和4×105x2y C. 4. 下列去括号正确的是( ) A.a(2abb)a2abb B.(2xy)(xy)2xyxy
C.2x3(x5)2x3x5
D.a[4a(13a)]a4a13a
5. 现规定一种运算:a*b=ab+a-b,其中a,b为有理数,则3*5的值为( ) A.11 B.12 C.13 D.14 6. 若式子3x2x6的值为8,则式子
24b42a和ba D.3x2y和-3x2y 552222222222323232xx4的值为( ) 25
A.1 B.5 C.3 D.4
7. 三个连续奇数,中间的一个是2n+1(n是整数),则这三个连续奇数的和为( ) A.2n-1 B.2n+3 C.6n+3 D.6n-3
-
8. 如果2-(m+1)a+an3是关于a的二次三项式,那么m,n应满足的条件是( ) A.m=1,n=5 B.m≠1,n>3 C.m≠-1,n为大于3的整数 D.m≠-1,n=5 二、填空题
9. -mxny是关于x,y的一个单项式,且系数是3,次数是4,则m= ,n= .
10. 多项式ab3-3a2b2-a3b-3按字母a的降幂排列是 .按字母b的升幂排列是 . 11. 当b= 时,式子2a+ab-5的值与a无关.
12. 若-7xyn+
1 3xmy4是同类项,则m+n .
13.多项式2ab-5a2+7b2加上 等于a2-5ab. 三、解答题
14.先化简,再求值:
2m211n2mn2(5m2n2mn2)3(mn22m2n),其中m=-l,n=3.
15.如图2-3-5所示的是某居民小区的一块长为b米,宽为2a米的长方形空地,为了美化环境,准备在这个长方形空 地的四个顶点各修建一个半径为a米的扇形花台,然后在花台内种花,其余空地种草.如果建筑花台及种花每平方米需要资金100元,种草每平方米需要资金50元,那么美化这块空地共需资金多少元?
6
因篇幅问题不能全部显示,请点此查看更多更全内容