fromitsgeodesicpathinagravitationalfield
VesselinPetkov
ScienceCollege,ConcordiaUniversity1455DeMaisonneuveBoulevardWestMontreal,Quebec,CanadaH3G1M8E-mail:vpetkov@alcor.concordia.ca
23October2001
Abstract
Ingeneralrelativitythegravitationalfieldisamanifestationofspacetimecurvatureandunliketheelectromag-neticfieldisnotaforcefield.Aparticlefallinginagravitationalfieldisrepresentedbyageodesicworldlinewhichmeansthatnoforceisactingonit.Iftheparticleisatrestinagravitationalfield,however,itsworldlineisnolongergeodesicanditissubjectedtoaforce.Thenatureofthatforceisanopenquestioningeneralrelativity.TheaimofthispaperistooutlineanapproachtowardresolvingitinthecaseofclassicalchargedparticleswhichwasinitiatedbyFermiin1921.
arXiv:gr-qc/0005084v5 24 Oct 2001Generalrelativityprovidesaconsistentno-forceexplanationofgravitationalinteractionofbodiesfollowinggeodesicpaths.However,itissilentonthenatureoftheveryforceweregardasgravitational-theforceactinguponabodydeviatedfromitsgeodesicpathduetoitsbeingatrestinagravitationalfield.
Inbothspecialrelativity(inflatspacetime)andgeneralrelativity(incurvedspacetime)aparticleofferingnoresistancetoitsmotionisrepresentedbyageodesicworldline.Asthenon-resistantmotionofaparticleisregardedasinertialaparticlewhoseworldlineisgeodesicismovingbyinertia.Inbothspecialandgeneralrelativityaparticlewhoseworldlineisnotgeodesicispreventedfrommovingbyinertiaandthereforeissubjectedtoaninertialforce.Henceaparticlesupportedinagravitationalfieldisdeviatedfromitsgeodesicpath(i.e.preventedfrommovingbyinertia)whichmeansthattheforceactingonitisnotgravitationalbutinertialinorigin.
Themasscausingthespacetimecurvaturedeterminestheshapeoftheparticle’sgeodesicworldline,andingeneralwhichreferenceframesareinertial[7],buttheforcearisingwhentheparticleisdeviatedfromitsgeodesicpathoriginatesneitherfromthatmassnorfromthedistantmasses(asMachproposed).Thisforcehasthesameoriginastheforceactingonatestparticlepreventedfromfollowingageodesicpathinanemptyspacetime.Itshouldbestressedthatingeneralrelativitytheforceactingonaparticledeviatedfromitsgeodesicpathduetoitsbeingatrestinagravitationalfieldisnon-gravitationalinorigin.AsRindlerputit”ironically,insteadofexplaininginertialforcesasgravitational...inthespiritofMach,Einsteinexplainedgravitationalforcesasinertial”[8].Thisisthereasonwhy”thereisnosuchthingastheforceofgravity”ingeneralrelativity[9].Hereitwillbeshownthatacorollaryofgeneralrelativity-thatthepropagationoflightinagravitationalfieldisanisotropic-inconjunctionwiththeclassicalelectromagneticmasstheory[1]-[6]shedssomelightonthenatureoftheforceactingonaclassicalchargedparticledeviatedfromitsgeodesicpath.
Consideraclassicalelectron[10]atrestinthenon-inertialreferenceframeNgofanobserversupportedintheEarth’sgravitationalfield.FollowingLorentz[4]andAbraham[5]weassumethattheelectronchargeisuniformlydistributedonasphericalshell.Therepulsionofthechargeelementsofanelectroninuniformmotioninflatspacetimecancelsoutexactlyandthereisnonetforceactingontheelectron.Asweshallseebelow,however,theaverageanisotropicvelocityoflightinNg(i)givesrisetoaself-forceactingonanelectrondeviatedfromitsgeodesicpathbydisturbingthebalanceofthemutualrepulsionofitschargeelements,and(ii)makesafreeelectronfallinNgwithanaccelerationginordertobalancetherepulsionofitschargeelements.Noforceisactinguponafallingelectron(whoseworldlineisgeodesic)butifitispreventedfromfalling(i.e.deviatedfromitsgeodesicpath)theaveragevelocityoflightwithrespecttoitbecomesanisotropicanddisturbsthebalanceofthemutualrepulsionoftheelementsofitscharge
1
whichresultsinaself-forcetryingtoforcetheelectrontofall.ThisforceturnsouttobeequaltothegravitationalforceF=mgg,wheremg=U/c2representsthepassivegravitationalmassoftheclassicalelectronandUistheenergyofitsfield.AsthecoefficientmginfrontofgisexactlyequaltoU/c2(withoutthe4/3factor)itturnsoutthatthemassoftheclassicalelectronispurelyelectromagneticinoriginwhentheaverageanisotropicvelocityoflightinagravitationalfieldistakenintoaccount.
In1921Fermi[11]studiedthenatureoftheforceactingonachargeatrestinagravitationalfieldofstrengthgintheframeworkofgeneralrelativityandtheclassicalelectromagneticmasstheory.Thepotential
ϕ=
e
2gz
6
g?
rD
rA
?
2gt
2
=gr2/2c2
Cr-Figure1.ThreelightrayspropagateinanelevatoratrestintheEarth’sgravitationalfield.AfterhavingbeenemittedsimultaneouslyfrompointsA,C,andDtheraysmeetatB′(theraypropagatingfromDtowardB,butarrivingatB′,representstheoriginalthoughtexperimentconsideredbyEinstein).ThelightraysemittedfromAandCareintroducedinordertodeterminetheexpressionfortheaveragevelocityoflightinagravitationalfield.Ittakesthesamecoordinatetimet=r/cfortheraystotravelthedistancesDB′≈r,AB′=r+δ,andCB′=r−δ.ThereforetheaveragevelocityofthedownwardrayfromAtoB′iscAB′=(r+δ)/t≈c(1+gr/2c2);theaveragevelocityoftheupwardrayfromCtoB′iscCB′=(r−δ)/t≈c(1−gr/2c2).
Threelightraysareemittedsimultaneouslyintheelevator(representinganon-inertialreferenceframeNg)frompointsA,C,andDtowardpointB.TheemissionoftheraysisalsosimultaneousinareferenceframeI(alocalLorentzframe)whichismomentarilyatrestwithrespecttoNg.AtthemomentthelightraysareemittedIstartstofallinthegravitationalfield.AtthenextmomentanobserverinIseesthattheelevatormovesupwardwithanaccelerationg=|g|.ThereforeasseenfromIthethreelightraysarrivesimultaneouslynotatpointB,butatB′sinceforthetimet=r/ctheelevatormovesatadistanceδ=gt2/2=gr2/2c2.AsthesimultaneousarrivalofthethreeraysatthepointB′inIisanabsoluteevent(thesameinallreferenceframes)beingapointevent,itfollowsthattheraysarrivesimultaneouslyatB′asseenfromNgaswell.Sinceforthesamecoordinatetimet=r/cinNgthethreelightraystraveldifferentdistancesDB′≈r,AB′=r+δ,andCB′=r−δbeforearrivingsimultaneouslyatpointB′anobserverintheelevatorconcludesthattheaveragevelocityofthelightraypropagatingfromAtoB′isslightlygreaterthanc
2
cgAB′
=
r+δ
2c2
.
′
TheaveragevelocitycgCB′ofthelightraypropagatingfromCtoBisslightlysmallerthanc
cgCB′
=
r−δ
2c2
.
Itiseasilyseenthattowithinterms∼c−2theaveragelightvelocitybetweenAandBisequaltothatbetweenAand
ggg
B′,i.e.cgAB=cAB′andalsocCB=cCB′:
rg
(2)cAB=
2c2and
cgCB
=
r
2c2
.
(3)
Astheaveragevelocities(2)and(3)arenotdeterminedwithrespecttoaspecificpointandsincethecoordinatetime
tisinvolvedintheircalculation,itisclearthattheexpressions(2)and(3)representtheaveragecoordinatevelocitiesbetweenthepointsAandBandCandB,respectively.
TheseexpressionsfortheaveragecoordinatevelocityoflightinNgcanbealsoobtainedfromthecoordinatevelocityoflightatapointinaparallelgravitationalfield.Ifthez-axisisantiparalleltotheelevator’saccelerationgthespacetimemetricinNghastheform[13]
2gz2
ds=1+
Themetric(4)canbewritteninaformsimilarto(6)ifwechooser=r0+zwherer0isaconstant
2GM
ds2=1−
.(5)c2
Noticethat(4)isthestandardspacetimeintervalinaparallelgravitationalfield[13],whichdoesnotcoincidewiththeexpressionforthespacetimeintervalinasphericallysymmetricgravitationalfield(i.e.theSchwarzschildmetric)[14,p.395]
22GM22
ds2=1−dx+dy+dz.(6)
c2r
c2r0
+
2gz
Usingthecoordinatevelocity(5)weobtainfortheaveragecoordinatevelocityoflightpropagatingbetweenAandB(Figure1)
1gzAg
cAB=c1+
2c2
andaszA=zB+rgzBg
cAB=c1+.(9)
2c2
FortheaveragecoordinatevelocityoflightpropagatingbetweenBandCweobtain
gzBg
(10)cBC=c1+
2c2sincezC=zB−r.WhenthecoordinateoriginisatpointB(zB=0)theexpressions(9)and(10)coincidewith(2)and(3).
ThereexistsathirdwaytoderivetheaveragecoordinatevelocityoflightinNg.Asthecoordinatevelocitycg(z)(5)iscontinuousontheinterval[zA,zB]inthecaseofweakparallelgravitationalfieldsonecancalculatetheaveragecoordinatevelocitybetweenAandB:
cgAB=
1
c2
+gr
dτA
wheredzB/dt=cg(zB)isthecoordinatevelocity(5)atB
=
dzB
dτA
gzB
c(zB)=c1+
g
c24
dt.
SincezA=zB+rforthecoordinatetimedtwehave
gzA
dt=1−
c2
−
gr
c2
orkeepingonlytheterms∼c−2
cgB
1−
gzB
c2
gr=c1−
2c2
.(11)
AsthelocalvelocityoflightatAiscitfollowsthatiflightpropagatesfromAtowardBitsaveragepropervelocitycgAB(asseenfromA)willbeequaltotheaveragepropervelocityoflightpropagatingfromBtowardAg
cBA(asseenfromA).Thus,asseenfromA,thebackandforthaveragepropervelocitiesoflighttravellingbetweenAandBarethesame.
NowletusdeterminetheaveragepropervelocityoflightbetweenBandAwithrespecttothesourcepointB.AlightsignalemittedatBasseenfromBwillhaveaninitial(local)velocitycthere.ThefinalvelocityofthesignalatAasseenfromBwillbe
dtdzA
cg=A
dt
c2
anddτBisthepropertimeatB
gzB
dτB=1+
c2
andtheaveragepropervelocityoflightpropagatingfromBtoAasseenfromBbecomes
grg
cBA(asseenfromB)=c1+
.2c2
AsseenfromapointPatadistancerfromBandlyingonalineforminganangleθwiththeaccelerationgtheaveragepropervelocityoflightfromBis
grcosθg
cBP(asseenfromP)=c1+
ThentheaveragepropervelocityoflightcomingfromBasseenfromapointdefinedbythepositionvectorroriginatingfromBhastheformg·rg
c¯=c1+
2c2
oflightpropagatingfromBtoAasseenfromA(whichmeansthatthelocallightvelocityatAisc)canbewrittenas
GMg
cBA(asseenfromA)=c1+.
2c2rBThevelocity(13)demonstratesthatthereexistsadirectionaldependenceinthepropagationoflightbetweentwopointsinanon-inertialframeofreferenceNgatrestinagravitationalfield.Thisanisotropyinthepropagationoflighthasbeenanoverlookedcorollaryofgeneralrelativity.Infact,uptonowneithertheaveragecoordinatevelocitynortheaveragepropervelocityoflighthavebeendefined.However,wehaveseenthattheaveragecoordinatevelocityisneededtoaccountforthepropagationoflightinagravitationalfield(toexplainthefactthattwolightsignalsemittedfrompointsA,andCinFigure1meetatB′,notatB).Wewillalsoseebelowthattheaveragepropervelocityoflightisnecessaryforthecorrectdescriptionofelectromagneticphenomenainagravitationalfield.
Theanisotropicvelocityoflight(13)leadstotwochangesinthescalarpotential
dϕg=
1
rg
(14)
ofachargeelementofanelectronatrestinNg;hereρisthechargedensity,dVgisavolumeelementofthechargeandrgisthedistancefromthechargetotheobservationpointdeterminedinNg.
First,analogouslytorepresentingrasr=ctinaninertialreferenceframe[17,p.416],rgisexpressedasrg=c¯gtinNg.Assumingthatg·r/2c2<<1(weakgravitationalfields)wecanwrite:
g·rg−1−1
1−(r)≈r
longerwithintheinformation-collectingsphere”[18,p.343]sweepingoverthechargeatthevelocityoflightcinI.BythesameargumenttheanisotropicvolumeelementdVgalsoappearsdifferentfromdVinNg:inadirectionoppositetogthevelocityoftheinformation-collectingsphere(whichpropagatesatthevelocityoflight(13)inNg)issmallerthancsinceforlightpropagatingagainstgwehaveg·r=−grin(13);thereforeanelementaryvolumedVgoftheelectronchargestayslongerwithinthesphereandcontributesmoretothepotentialinNg.
ConsiderachargeoflengthlatrestinNgplacedalongg.Thetimeforwhichtheinformation-collectingspheresweepsoverthechargeinNgis
∆tg
=
lc(1+g·r/2c2)
≈∆t1−g·r2c2
.
Theanisotropicvolumeelementwhichcorrespondstosuchanapparentlengthlgisobviously
dVg
=dV1−
g·rρdVg
ρdV2
4πǫ0
4πǫ0
2c2
orifwekeeponlythetermsproportionaltoc−2weget
dϕg
=
ρ
c2
dV.(17)
Asseenfrom(17)makinguseofdVginsteadofdVaccountsforthe1/2factorin(1).NowwecancalculatetheelectricfieldofachargeelementρdVgofanelectronatrestinNgbyusingonlythescalarpotential(17):
dEg=−∇dϕg
=
1r2−g·nc2rρdV.(18)Thedistortionoftheelectricfield(18)iscausedbytheanisotropicvelocityoflight(13)inNg.Forthedistortedfield
ofthewholeelectronchargewefind
Eg
=1g·nr2−
c2rρdV.(19)Theself-forcewithwhichthefieldofanelectroninteractswithanelementρdVg1ofitschargeis
dFgg1Eg=1g·nr2−c2r
ρ2
dVdVgself=ρdV1
.(20)
Duetothedistortedelectricfield(19)ofanelectronatrestinNgthemutualrepulsionofitschargeelementsdoesnot
cancelout.Asaresultanon-zeroself-forcewithwhichtheelectronactsuponitselfarises:
Fg
1g·nself=r2−c2rρ2dVdVg1.(21)Aftertakingintoaccounttheexplicitform(16)ofdVg1(21)becomes
Fg
1g·nself=r2−
c2r
1−g·rAssumingasphericallysymmetricdistributionoftheelectroncharge[4]andfollowingthestandardprocedureofcalculatingtheself-force[21]weget:
U
Fg=self
ρ2
8πǫo
1
4πǫor
A(r,t)=
g
c2
1−v·n/c
e
g·r
1−
(25)
∂t
whichreducestotheCoulombfield[23]
=
e
r2
+
g·n
c2r
e
g·n+−
c2r
,
.(27)r2
Thereforetheinstantaneouselectricfieldofafallingelectronisnotdistorted.Thisdemonstratesthattherepulsionofitschargeelementsisbalanced,thusproducingnoself-force.Thisresultshedslightonthequestionwhyingeneralrelativityanelectronisfallinginagravitationalfield”byitself”withnoforceactingonit.As(27)shows,theonlywayforanelectrontocompensatetheanisotropyinthepropagationoflightandtopreservetheCoulombshapeofitselectricfieldistofallwithanaccelerationg.Iftheelectronispreventedfromfallingitselectricfielddistorts(disturbingthebalanceoftherepulsionofitschargeelements),theself-force(24)appearsandtriestoforcetheelectrontofallinordertoeliminatethedistortionofitsfield;iftheelectronislefttofallitsCoulombfieldrestores,therepulsionofitschargeelementscancelsoutandtheself-forcedisappears[24].
Tosummarize,thestudyoftheopenquestioningeneralrelativity-whatisthenatureoftheforceactinguponaparticledeviatedfromitsgeodesicpath-bytakingintoaccounttheclassicalelectromagneticmasstheoryprovidesaninsightnotonlyintothatquestion(inthecaseoftheclassicalelectron)butalsointothequestionwhyafallingelectron(whoseworldlineisgeodesic)issubjectedtonoforce.
8
E=
References
[1]J.J.Thomson,Phil.Mag.11,229(1881).[2]O.Heaviside,TheElectrician14,220(1885).[3]G.F.C.Searle,Phil.Mag.44,329(1897).
[4]H.A.Lorentz,TheoryofElectrons,2nded.(Dover,NewYork,1952).
[5]M.Abraham,TheClassicalTheoryofElectricityandMagnetism,2nded.(Blackie,London,1950).[6]F.Rohrlich,ClassicalChargedParticles,(Addison-Wesley,NewYork,1990).
[7]S.Weinberg,GravitationandCosmology:principlesandapplicationsofthegeneraltheoryofrelativity,(Wiley,
NewYork,1972),p.87.[8]W.Rindler,EssentialRelativity,2nded.(Springer-Verlag,NewYork,1977),p.244.[9]J.L.Synge,Relativity:thegeneraltheory,(Nord-Holand,Amsterdam,1960),p.109.
[10]Weconsideraclassicalelectronsincethereexistsnoquantum-mechanicaldescriptionoftheelectronstructure
atthismoment.However,ifaclassicaltreatmentsucceedsinexplainingthenatureoftheforceactinguponanelectronwhoseworldlineisnotgeodesic,thiswillimplythatacorrespondingquantum-mechanicaldescriptionofthatforceisalsopossible.[11]E.Fermi,NuovoCimento22,176(1921).
[12]V.Petkov,Ph.D.Thesis,(ConcordiaUniversity,Montreal,1997);seealsophysics/9909019.
[13]C.W.Misner,K.S.ThorneandJ.A.Wheeler,Gravitation,(Freeman,SanFrancisco,1973),p.1056.[14]H.OhanianandR.Ruffini,GravitationandSpacetime,2nded.,(NewYork,London:W.W.Norton,1994).[15]W.Rindler,Am.J.Phys.36,540(1968).
[16]Theequivalenceprinciplecanbeappliedonlytoregionsofdimensionsrinagravitationalfieldwhicharesmall
enough(suchthatgr/2c2≪1)inordertoensurethatthefieldisparallelthere.[17]D.J.Griffiths,IntroductiontoElectrodynamics,2nded.,(PrenticeHall,NewJersey,1989).
[18]W.K.H.PanofskyandM.Phillips,ClassicalElectricityandMagnetism,2nded.,(Addison-Wesley,Massachusetts,
London,1962).[19]R.P.Feynman,R.B.LeightonandM.Sands,TheFeynmanLecturesonPhysics,Vol.2,(Addison-Wesley,New
York,1964).[20]M.Schwartz,PrinciplesofElectrodynamics,(Dover,NewYork,1972).
[21]B.PodolskyandK.S.Kunz,FundamentalsofElectrodynamics,(MarcelDekker,NewYork,1969),p.288.[22]WeconsidertheinstantaneouselectronfieldinordertoseparateitsLorentzcontractionfromthedistortioncaused
bytheelectronaccelerationandtheanisotropicvelocityoflight.[23]Itisclearfromherethatafallingelectrondoesnotradiatesinceitselectricfielddoesnotcontaintheradiation
r−1terms[12].Ifthosetermswerepresentinthefieldofafallingelectronthiswouldconstituteacontradictionwiththeprincipleofequivalence.[24]Thebehaviouroftheclassicalelectroninagravitationalfieldasdescribedbygeneralrelativityandtheclassical
electromagneticmasstheorycanbesummarizedinthefollowingway:theworldlineofanelectronwhichpreservestheshapeofitsCoulombfieldisgeodesicandrepresentsafreenon-resistantlymovingelectron;ifthefieldofanelectronisdistorted,itsworldlineisnotgeodesicandtheelectronissubjectedtoaself-forceonaccountofitsowndistortedfield.
9
因篇幅问题不能全部显示,请点此查看更多更全内容